How does an Electric Motor work? (DC Motor)
If you look around your house,
you will see many devices that have electric motors,
such as kids' toys, table fans,
toothbrushes, hairdryers, and this electric cutting knife.
But how does the electric motor work?
You turn it on and somehow it starts rotating.
Why is that?
we'll cover the basics of electricity
and magnets and then put it all together
to understand how the motor works.
Let's start with something called a circuit.
You have a battery, some wires
and a device that uses electricity,
such as a light bulb.
Electricity flows through the circuit.
But as soon as there is a break in the wire,
the electricity stops flowing
and the light bulb goes off.
The path must be complete for the circuit to work.
This is best down through the use of a switch.
Electricity is flowing down the wire.
This is called conventional flow.
If we take the battery out and flip it,
then the current will flow the other way.
The light bulb will still work in either case
but there are some devices
that will work differently depending
on which way the current flows.
Okay, so that's the basics of a circuit.
Now let's come over here.
This is a magnet.
It has a north pole and a south pole.
And it likes to attract other metal objects
like these paperclips.
If you bring another magnet towards it,
opposite poles attract,
and the same poles repel.
The magnets don't have to be in this shape,
for example, some magnets might be more flat, like this.
You can think of this magnet as always on,
it's always working, you can't really turn it off.
That's why it's sometimes called a permanent magnet.
It's made up of any smaller magnet domains
that are lined up in the same direction
but later, I'll show you a type of magnet
where this not always the case.
Let's take one of our permanent magnets
and drill a hole in the center
and put it on something that will allow it to spin.
Now, bring another magnet towards it.
Our spinning magnet will immediately line up
until opposite poles are right next to each other.
Now switch out the side magnet.
The same poles repel and opposite poles attract.
If we keep switching out these side magnets,
then our spinning magnet will just keep spinning.
This concept of the spinning magnet is really important.
We'll come back to it in a moment.
Here's a metal bolt which is not a magnet.
It's made up of magnetic domains
but they're pointing in random directions.
Now let's take a wire,
wrap it around several times and then create a circuit.
The current through wires forces the magnetic domains
to line up.
That means we've just made a magnet,
or more specifically, an electromagnet.
It can do the same things that a permanent magnet can.
It can pick up pieces of metal
and it has a north and a south pole,
which will attract or repel other magnets.
But the electromagnet is special
in the sense that it can be turned on or off,
just like the light bulb.
You can't do that with a permanent magnet.
Now watch what happens when we flip the battery.
The electric current was flowing this way
but now it flows the other way.
This will cause the poles on our magnet to switch places.
North will become south
and south will become north.
This is called reversing the polarity of an electromagnet.
Instead of flipping the battery,
an easier way to do this
is to just switch the wires.
You should be aware that the electromagnet
will get very hot if it's on for a while,
just a caution in case this video inspires
any science projects.
Let's come back to our spinning magnet.
This time we'll replace the spinning magnet
with our electromagnet.
As soon as we connect the wires,
the magnet turns on and it lines up
with the side magnet.
Now, in reality, connecting these wires
would prevent the bolt from spinning freely
but what's important here
is the concept of the spinning electromagnet.
Now let's switch the wires to reverse the poles
on the electromagnet.
The same poles repel and opposite poles attract.
Now, reverse the polarity again.
Same poles repel and opposite poles attract.
If we keep switching the polarity,
our electromagnet will just keep spinning.
To make this strong,
let's bring in another permanent magnet on the side.
Notice how this side has the south pole
towards the center and this side
has the north pole towards the center.
The side magnets work together
to spin the one in the middle.
This right here shows the very basics
of an electric motor
but we need to make a few improvements.
The two side magnets can be replaced
with stronger curved magnets.
And instead of a bolt with wires,
we're gonna use a metal loop.
This is called the armature.
Connect our wires and we have a circuit again.
This time, you can think of the electromagnet
as flat like this with the south pole pointing up.
Now the armature will spin
until opposite poles are lined up.
We can keep it spinning
by switching the wires just like we did before.
But this is a lot of work to sit here
and manually
0 Comments